[gesichtete Version] | [gesichtete Version] |
Zeile 1: | Zeile 1: | ||
=Aussagenlogische Formeln vereinfachen= | =Aussagenlogische Formeln vereinfachen= | ||
<loop_area type="task"> | |||
Nutze logische Identitäten, um die folgende aussagenlogische Formel auf möglichst einfache Gestalt zu bringen: | |||
:<math> | |||
( ( X \rightarrow Y ) \rightarrow ( Y \rightarrow Z ) ) \rightarrow Z | |||
</math> | |||
</loop_area> | |||
<br /> | |||
=== Ein möglicher Lösungsweg === | |||
Die folgende Aneinanderreihung der Anwendung der Gesetze stellt einen möglichen Lösungsweg dar. Es gibt darüber hinaus jedoch noch viele alternative Lösungswege, welche am Ende alle zum gleichen Ziel führen.<br /> | |||
<br /> | |||
:<math> | :<math> | ||
Zeile 8: | Zeile 20: | ||
\equiv \quad & \neg ( \neg ( \neg X \lor Y ) \lor ( Y \rightarrow Z )\ ) \lor Z & \qquad [\text{Implikation umformen}] \\[.3cm] | \equiv \quad & \neg ( \neg ( \neg X \lor Y ) \lor ( Y \rightarrow Z )\ ) \lor Z & \qquad [\text{Implikation umformen}] \\[.3cm] | ||
\equiv \quad & \neg(\ \neg( \neg X \lor Y ) \lor ( \neg Y \lor Z )\ ) \lor Z & \qquad [\text{De Morgansches Gesetz}] \\[.3cm] | \equiv \quad & \neg(\ \neg( \neg X \lor Y ) \lor ( \neg Y \lor Z )\ ) \lor Z & \qquad [\text{De Morgansches Gesetz}] \\[.3cm] | ||
\equiv \quad & \neg(\ ( \neg \neg X \land \neg Y ) \lor ( \neg Y \lor Z )\ ) \lor Z & \qquad [\text{Doppelnegationsgesetz}] \\[.3cm] | |||
\equiv \quad & \neg(\ ( X \land \neg Y ) \lor ( \neg Y \lor Z )\ ) \lor Z & \qquad [\text{De Morgansches Gesetz}] \\[.3cm] | \equiv \quad & \neg(\ ( X \land \neg Y ) \lor ( \neg Y \lor Z )\ ) \lor Z & \qquad [\text{De Morgansches Gesetz}] \\[.3cm] | ||
\equiv \quad & \neg(\ X \land \neg Y ) \land \neg ( \neg Y \lor Z )\ ) \lor Z & \qquad [\text{De Morgansches Gesetz}] \\[.3cm] | \equiv \quad & \neg(\ X \land \neg Y ) \land \neg ( \neg Y \lor Z )\ ) \lor Z & \qquad [\text{De Morgansches Gesetz}] \\[.3cm] | ||
\equiv \quad & (\ \neg X \lor Y ) \land ( \neg \neg Y \land \neg Z ) \lor Z & \qquad [\text{Doppelnegationsgesetz}] \\[.3cm] | |||
\equiv \quad & (\ \neg X \lor Y ) \land ( Y \land \neg Z ) \lor Z & \qquad [\text{Klammern auflösen}] \\[.3cm] | \equiv \quad & (\ \neg X \lor Y ) \land ( Y \land \neg Z ) \lor Z & \qquad [\text{Klammern auflösen}] \\[.3cm] | ||
\equiv \quad & (\ \neg X \lor Y ) \land Y \land \neg Z \lor Z & \qquad [\text{Bindungsstärke beachten!}] \\[.3cm] | \equiv \quad & (\ \neg X \lor Y ) \land Y \land \neg Z \lor Z & \qquad [\text{Bindungsstärke beachten!}] \\[.3cm] |
Nutze logische Identitäten, um die folgende aussagenlogische Formel auf möglichst einfache Gestalt zu bringen:
Die folgende Aneinanderreihung der Anwendung der Gesetze stellt einen möglichen Lösungsweg dar. Es gibt darüber hinaus jedoch noch viele alternative Lösungswege, welche am Ende alle zum gleichen Ziel führen.