Gegeben sei die folgende Wahrheitstafel.
Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A}
, Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B}
und Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle C}
sind die Variablen, Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F}
ist der Funktionswert.
|
|
|
|
---|---|---|---|
Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | ||
Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} | |
Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} |
Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | |
Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} | Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} |
Aus dieser Wahrheitstafel resultiert der folgende Term in KNF (konjunktiver Normalform):
Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (\neg A \land \neg B \land \neg C) \quad \lor \quad (\neg A \land B \land C) \quad \lor \quad (A \land \neg B \land \neg C) \quad \lor \quad (A \land B \land \neg C)}
Ein Term in DNF ist eine Disjunktion von Konjunktionen!
Vor dem erklärenden Video noch ein Hinweis zur Schreibweise:
Unterschiedliche Quellen schreiben die Negation in der Aussagenlogik in unterschiedlicher Weise.
Gegeben sei eine Aussage Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A}
.
Dann wird die Negation dieser Aussage geschrieben als Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \neg A}
oder .
Beide Schreibweisen sind in ihrer Bedeutung identisch. Je nach Quelle (Fachbuch, Dozent, Webseite, ...) wird mal die eine und mal die andere Schreibweise angewendet.
Am besten du gewöhnst dich einfach daran.
Das folgende Video erklärt, wie man von einer gegebenen Wahrheitstafel zu einer aussagenlogischen Formel in disjunktiver Normalform (DNF) kommt:
Wenn Sie dieses Element öffnen, werden Inhalte von externen Dienstleistern geladen und dadurch Ihre IP-Adresse an diese übertragen.
In einer gegebenen Wahrheitstafel finden sich in der Ergebnisspalte die Funktionswerte Null (0) bzw. Eins (1). Welcher dieser beiden Werte ist für die Bildung der DNF (disjunktiven Normalform) aus der Wahrheitstafel von Bedeutung?